Chris Naus
02/04/2025, 2:14 PMMaro
02/05/2025, 6:41 AMAravind Karunakaran
02/07/2025, 11:59 AMAnwaar
02/08/2025, 10:34 PMMiro Lavi
02/08/2025, 11:10 PMlr_pipeline = make_pipeline(
LagPromotionScaleTransformer(
group_id_column="Market",
event_columns=["Mechanic 1 Detailed", "Audience 1"],
lags=[1, 2, 3, 7, 14, 21],
),
LinearRegression()
)
mlf = MLForecast(
models={"lr_pipeline":lr_pipeline},
freq="1d",
lags=[1, 2, 3, 7, 14, 21],
target_transforms=[LocalMinMaxScaler()]
)
cv_results = mlf.cross_validation(
df=features,
n_windows=10,
h=21,
static_features=[],
prediction_intervals=PredictionIntervals(n_windows=2, h=21),
level=[0.8, 0.95]
)
y pred lo_95 lo_80 hi_80 hi_95
153595 145229 145173 145182 145277 145285
138468 140029 139993 139999 140059 140065
143796 137528 137337 137367 137689 137719
Most often the y is outside the lo_95 and hi_95 as well as the lo_80 and hi_80.
The base model performs reasonably well in terms of MAPE (~15%), but the prediction intervals do not seem to reflect the actual variance in errors. Is this expected behavior for predict_interval with linear models?Rodrigo Sodré
02/12/2025, 7:03 PMAnwaar
02/13/2025, 2:39 PMIgor Goldenberg
02/19/2025, 12:50 AMDan Averbukh
02/21/2025, 6:50 PMhadar sharvit
02/23/2025, 7:49 AMN
products with historical prices signal:
{p1(t=01.01.2024), p1(t=01.02.2024), ... ,p1(t=31.12.2024)},
{p2(...), ... }
...
{pN(t=01.01.2024), pN(t=01.02.2024), ... ,pN(t=31.12.2024)}
(sorry for the rough notation there, hope it's clear)
what might be an apropriate framework to:
1. predict the future sales (say, 2025) of these N products: p1(01.01.2025) ... pN(31.12.2025)
2. predict the sales of new products pN+1, pN+2, ...Arvind Puthucode
02/24/2025, 4:46 AMservando torres
02/24/2025, 7:16 AMIndar Karhana
03/04/2025, 5:19 PMSteffen Runge
03/07/2025, 11:32 AMArvind Puthucode
03/17/2025, 9:02 AMWill Atwood
03/17/2025, 5:36 PMRodrigo Sodré
03/19/2025, 1:35 AMLuis Enrique Patiño
03/19/2025, 9:20 PMhadar sharvit
03/23/2025, 1:53 PMdef fit(df,...):
df = feature_encoding(df)
df = normalize(df)
for X,y in dataloader(...):
pred = model(X) ...
in the training loop:
def fit(df,...):
for X,y in dataloader(...):
X = feature_encoding(X)
X = normalize(X)
pred = model(X) ...
Alex
03/27/2025, 1:35 PMLuis Enrique Patiño
03/31/2025, 11:11 PMSamuel
04/13/2025, 4:38 PMHeitor Carvalho Pinheiro
04/14/2025, 2:45 AMplot_series
function in utils, can anyone tell me why there's a gap between the training data and the predictions? It does not bother me much, but some people might find it weird when I'm presenting. Is there any way to get rid of that gap betwwen the series?Samuel
04/15/2025, 6:44 AMRodrigo Sodré
04/18/2025, 7:37 PMSamuel
04/22/2025, 7:46 AMjan rathfelder
04/24/2025, 9:31 PMValeriy
04/25/2025, 7:46 AMValeriy
04/28/2025, 8:11 AMRenan Avila
04/29/2025, 7:44 PM