Makarand Batchu
03/21/2024, 12:20 PMlgb_params = {
'verbosity': -1,
'num_leaves': 512,
}
models = {
'KNeighborsRegressor': KNeighborsRegressor(),
'Lasso': Lasso(),
'LinearRegression': LinearRegression(),
'MLPRegressor': MLPRegressor(),
'Ridge': Ridge(),
'DT': DecisionTreeRegressor(),
'avg': lgb.LGBMRegressor(**lgb_params),
'q75': lgb.LGBMRegressor(**lgb_params, objective='quantile', alpha=0.75),
'q25': lgb.LGBMRegressor(**lgb_params, objective='quantile', alpha=0.25)
}
Is there a way to hyper-parameter tune these individual models using MLForecast or any other offering by Nixtla?
I do understand that there is the option of using traditional approaches like gridsearchcv etc but the process would become very complicated because I have multiple unique_ids for which I want to forecast.
Thanks in advance!José Morales
03/21/2024, 2:24 PMMakarand Batchu
03/21/2024, 4:02 PMJosé Morales
03/21/2024, 4:12 PMMakarand Batchu
03/21/2024, 4:13 PM