Vítor Barbosa
04/08/2024, 8:28 PMhorizon = 12
models = [LinearRegression(), BayesianRidge(), lgb.LGBMRegressor(verbosity=-1)] #xgb.XGBRegressor(verbosity=0)
forecast_ml = MLForecast(models=models,
lags=range(1, horizon+1),
freq='B')
See attached the output and cross validation. I have also added the cross-validation for the same settings on darts.
Now if I use the differences transform it looks better, but quite noisy:
forecast_ml = MLForecast(models=models,
lags=range(1, horizon+1),
lag_transforms={
1: [ExpandingMean()],
horizon: [RollingMean(window_size=horizon)],
},
freq='B',
target_transforms=[Differences([1,horizon])])
Any tips?José Morales
04/08/2024, 8:37 PMVítor Barbosa
04/08/2024, 8:44 PMLinearRegression - MLForecast RMSE for prediction: 1.068
LinearRegression - MLForecast MAPE for prediction: 6.62 %
BayesianRidge - MLForecast RMSE for prediction: 1.068
BayesianRidge - MLForecast MAPE for prediction: 6.62 %
LGBMRegressor - MLForecast RMSE for prediction: 0.9197
LGBMRegressor - MLForecast MAPE for prediction: 5.63 %
LinearRegression - MLForecast RMSE using cross-validation: 1.381
LinearRegression - MLForecast MAPE using cross-validation: 5.09 %
BayesianRidge - MLForecast RMSE using cross-validation: 1.381
BayesianRidge - MLForecast MAPE using cross-validation: 5.09 %
LGBMRegressor - MLForecast RMSE using cross-validation: 7.665
LGBMRegressor - MLForecast MAPE using cross-validation: 24.4 %
LinearRegression() - Darts RMSE for prediction: 1.264
LinearRegression() - Darts MAPE for prediction: 7.17 %
BayesianRidge() - Darts RMSE for prediction: 1.264
BayesianRidge() - Darts MAPE for prediction: 7.17 %
LGBMRegressor(verbose=-1) - Darts RMSE for prediction: 1.318
LGBMRegressor(verbose=-1) - Darts MAPE for prediction: 7.73 %
LinearRegression() - Darts RMSE using cross-validation: 2.176
LinearRegression() - Darts MAPE using cross-validation: 6.41 %
BayesianRidge() - Darts RMSE using cross-validation: 2.176
BayesianRidge() - Darts MAPE using cross-validation: 6.41 %
LGBMRegressor(verbose=-1) - Darts RMSE using cross-validation: 2.193
LGBMRegressor(verbose=-1) - Darts MAPE using cross-validation: 6.66 %
José Morales
04/08/2024, 8:45 PMVítor Barbosa
04/08/2024, 8:51 PMLinearRegression - MLForecast RMSE for prediction: 0.8298
LinearRegression - MLForecast MAPE for prediction: 5.29 %
BayesianRidge - MLForecast RMSE for prediction: 0.8294
BayesianRidge - MLForecast MAPE for prediction: 5.29 %
LGBMRegressor - MLForecast RMSE for prediction: 0.621
LGBMRegressor - MLForecast MAPE for prediction: 3.73 %
LinearRegression - MLForecast RMSE using cross-validation: 3.184
LinearRegression - MLForecast MAPE using cross-validation: 12.3 %
BayesianRidge - MLForecast RMSE using cross-validation: 3.082
BayesianRidge - MLForecast MAPE using cross-validation: 12.0 %
LGBMRegressor - MLForecast RMSE using cross-validation: 1.732
LGBMRegressor - MLForecast MAPE using cross-validation: 6.53 %
José Morales
04/08/2024, 8:52 PMVítor Barbosa
04/08/2024, 8:55 PMjan rathfelder
04/16/2024, 11:58 AM