Brian Head
05/07/2024, 1:41 PMTyler Blume
05/07/2024, 2:01 PMfrom sklearn.base import BaseEstimator
class Naive(BaseEstimator):
def fit(self, X, y):
return self
def predict(self, X):
return X['lag1']
fcst = MLForecast(
models=[Naive()],
freq=1,
lags=[1],
target_transforms=[LocalStandardScaler()]
)
fcst.fit(df)
preds = fcst.predict(1)
preds
Tyler Blume
05/07/2024, 2:01 PMBrian Head
05/07/2024, 3:21 PM