Pruthvi Teja
05/14/2024, 7:06 PMMarco
05/14/2024, 8:38 PMPruthvi Teja
05/14/2024, 9:15 PMPruthvi Teja
05/16/2024, 7:59 PMRuntimeError: maximum size for tensor at dimension 2 is 30 but size is 36
Error trace -
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
Cell In[40], line 1
----> 1 y_hat = model.decompose(dataset=dataset)
File /opt/conda/lib/python3.10/site-packages/neuralforecast/common/_base_windows.py:728, in BaseWindows.decompose(self, dataset, step_size, random_seed, **data_module_kwargs)
722 datamodule = TimeSeriesDataModule(
723 dataset=dataset,
724 valid_batch_size=self.valid_batch_size,
725 **data_module_kwargs,
726 )
727 trainer = pl.Trainer(**self.trainer_kwargs)
--> 728 fcsts = trainer.predict(self, datamodule=datamodule)
729 self.decompose_forecast = False # Default decomposition back to false
730 return torch.vstack(fcsts).numpy()
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:864, in Trainer.predict(self, model, dataloaders, datamodule, return_predictions, ckpt_path)
862 self.state.status = TrainerStatus.RUNNING
863 self.predicting = True
--> 864 return call._call_and_handle_interrupt(
865 self, self._predict_impl, model, dataloaders, datamodule, return_predictions, ckpt_path
866 )
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:44, in _call_and_handle_interrupt(trainer, trainer_fn, *args, **kwargs)
42 if trainer.strategy.launcher is not None:
43 return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
---> 44 return trainer_fn(*args, **kwargs)
46 except _TunerExitException:
47 _call_teardown_hook(trainer)
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:903, in Trainer._predict_impl(self, model, dataloaders, datamodule, return_predictions, ckpt_path)
899 assert self.state.fn is not None
900 ckpt_path = self._checkpoint_connector._select_ckpt_path(
901 self.state.fn, ckpt_path, model_provided=model_provided, model_connected=self.lightning_module is not None
902 )
--> 903 results = self._run(model, ckpt_path=ckpt_path)
905 assert self.state.stopped
906 self.predicting = False
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:987, in Trainer._run(self, model, ckpt_path)
982 self._signal_connector.register_signal_handlers()
984 # ----------------------------
985 # RUN THE TRAINER
986 # ----------------------------
--> 987 results = self._run_stage()
989 # ----------------------------
990 # POST-Training CLEAN UP
991 # ----------------------------
992 log.debug(f"{self.__class__.__name__}: trainer tearing down")
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:1028, in Trainer._run_stage(self)
1026 return self._evaluation_loop.run()
1027 if self.predicting:
-> 1028 return self.predict_loop.run()
1029 if self.training:
1030 with isolate_rng():
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/loops/utilities.py:182, in _no_grad_context.<locals>._decorator(self, *args, **kwargs)
180 context_manager = torch.no_grad
181 with context_manager():
--> 182 return loop_run(self, *args, **kwargs)
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/loops/prediction_loop.py:124, in _PredictionLoop.run(self)
122 self.batch_progress.is_last_batch = data_fetcher.done
123 # run step hooks
--> 124 self._predict_step(batch, batch_idx, dataloader_idx, dataloader_iter)
125 except StopIteration:
126 # this needs to wrap the `*_step` call too (not just `next`) for `dataloader_iter` support
127 break
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/loops/prediction_loop.py:253, in _PredictionLoop._predict_step(self, batch, batch_idx, dataloader_idx, dataloader_iter)
247 # configure step_kwargs
248 step_args = (
249 self._build_step_args_from_hook_kwargs(hook_kwargs, "predict_step")
250 if not using_dataloader_iter
251 else (dataloader_iter,)
252 )
--> 253 predictions = call._call_strategy_hook(trainer, "predict_step", *step_args)
254 if predictions is None:
255 self._warning_cache.warn("predict returned None if it was on purpose, ignore this warning...")
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:309, in _call_strategy_hook(trainer, hook_name, *args, **kwargs)
306 return None
308 with trainer.profiler.profile(f"[Strategy]{trainer.strategy.__class__.__name__}.{hook_name}"):
--> 309 output = fn(*args, **kwargs)
311 # restore current_fx when nested context
312 pl_module._current_fx_name = prev_fx_name
File /opt/conda/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py:438, in Strategy.predict_step(self, *args, **kwargs)
436 if self.model != self.lightning_module:
437 return self._forward_redirection(self.model, self.lightning_module, "predict_step", *args, **kwargs)
--> 438 return self.lightning_module.predict_step(*args, **kwargs)
File /opt/conda/lib/python3.10/site-packages/neuralforecast/common/_base_windows.py:560, in BaseWindows.predict_step(self, batch, batch_idx)
557 def predict_step(self, batch, batch_idx):
558
559 # TODO: Hack to compute number of windows
--> 560 windows = self._create_windows(batch, step="predict")
561 n_windows = len(windows["temporal"])
562 y_idx = batch["y_idx"]
File /opt/conda/lib/python3.10/site-packages/neuralforecast/common/_base_windows.py:244, in BaseWindows._create_windows(self, batch, step, w_idxs)
241 padder_right = nn.ConstantPad1d(padding=(0, self.h), value=0)
242 temporal = padder_right(temporal)
--> 244 windows = temporal.unfold(
245 dimension=-1, size=window_size, step=predict_step_size
246 )
248 # [batch, channels, windows, window_size] 0, 1, 2, 3
249 # -> [batch * windows, window_size, channels] 0, 2, 3, 1
250 windows_per_serie = windows.shape[2]
RuntimeError: maximum size for tensor at dimension 2 is 30 but size is 36
virgilio espina
06/26/2024, 6:15 PMMarco
06/26/2024, 6:22 PMfreq=1
?virgilio espina
06/27/2024, 1:24 AM