Blauzo
05/16/2024, 7:51 PMhorizon = 8
samples = 40
models=[
AutoNBEATS(h=horizon, num_samples=samples , gpus=1, backend='optuna', alias="Auto-NBEATS"),
NBEATS(h=horizon, input_size=horizon * 5),
]
nf_Nbeats = NeuralForecast(models=models, freq='H')
crossvalidation_df = nf_Nbeats.cross_validation(df=df, step_size=horizon, n_windows = (split - horizon + 1 ) // horizon)
Model Steps MAE RMSE R2
0 A-NBEATS 8 343.775928 474.768585 0.311836
1 NBEATS 8 366.314055 502.145682 0.230183
Cristian (Nixtla)
05/19/2024, 4:34 AMBlauzo
05/21/2024, 6:07 PMCristian (Nixtla)
05/21/2024, 8:24 PMAutoNBEATS
? It will automatically select the best hyperparameters for your case. Also, if you have exogenous covariates you can include them in the AutoNBEATSx
and NBEATSx
models.Blauzo
05/21/2024, 9:52 PMn_samples
you recommend? I got my best results in the 20-30 range. Also every now and then the auto model goes very bad, like -1000 MAE. Any ideas why?