Naren Castellon
06/02/2024, 3:56 AMJosé Morales
06/03/2024, 3:52 PMNaren Castellon
06/03/2024, 3:55 PMJosé Morales
06/03/2024, 3:56 PMNaren Castellon
06/03/2024, 3:58 PMmlf = MLForecast(models=models,
freq='MS',
lags=range(1,14,1),
#lag_transforms={1: [expanding_mean],7: [(rolling_mean, 7)] },
target_transforms=[Differences([2]), LocalRobustScaler(scale='iqr')], # LocalRobustScaler(scale='iqr') Differences([1]), LocalStandardScaler()
date_features=["year", "month", "day"],
num_threads=2
)
José Morales
06/03/2024, 4:01 PMX_df
Naren Castellon
06/03/2024, 4:05 PMX_df = test
for the predict, it should not contain the target = y
variable, only the exogenous variables the ds
and unique_id
.
You know what's strange about this, it's happened to me on several occasions, and I've decided not to use cross validation on those occasions.José Morales
06/03/2024, 4:07 PMJosé Morales
06/03/2024, 4:08 PMNaren Castellon
06/03/2024, 4:12 PMmlf.fit(train,fitted=True, static_features= [],
prediction_intervals=PredictionIntervals(n_windows=3, h = 24, method="conformal_distribution") )
cross validation
cv_result_ml = mlf.cross_validation(
train,
n_windows = 3, # number of models to train/splits to perform
h = 24, )
José Morales
06/03/2024, 4:13 PMstatic_features=[]
in the cross_validation call as wellNaren Castellon
06/03/2024, 4:17 PMNaren Castellon
06/03/2024, 10:59 PMJosé Morales
06/03/2024, 11:00 PMfutr_exog_list
it's ok.Naren Castellon
06/03/2024, 11:01 PM