Naren Castellon
06/08/2024, 3:08 PMmodels = [AutoARIMA(season_length=season_length),
SeasonalNaive(season_length=season_length),
SklearnModel(Lasso()),
SklearnModel(Ridge()),
SklearnModel(RandomForestRegressor())
]
# Forecast
preds = sf.forecast(
df = train,
h = 120,
X_df = test, # Exogenous variables
prediction_intervals = ConformalIntervals(n_windows = 5, h = 120),
level = [95],
)
# Cross Validation
sf.cross_validation(df = train, h = 120, n_windows = 5)
José Morales
06/10/2024, 4:43 PMNaren Castellon
06/23/2024, 5:14 PMMlforecast
and statsforecast
, for univariate model and for multivariateNaren Castellon
06/23/2024, 5:27 PMJosé Morales
06/25/2024, 2:00 AM