Ml Club
07/18/2024, 6:28 AMfrom sklearn.preprocessing import PolynomialFeatures
best_poly_features = PolynomialFeatures(degree=3)
X_poly = best_poly_features.fit_transform(np.array(range(len(df))).reshape(-1, 1))
best_poly_model = LinearRegression()
best_poly_model.fit(X_poly, df['Values'])
X_pred = best_poly_features.fit_transform(np.array(range(len(df), len(df) + forecast_horizon)).reshape(-1, 1))
forecast_values = best_poly_model.predict(X_pred)
df['Polynomial'] = best_poly_model.predict(X_poly)
José Morales
07/18/2024, 3:14 PM