Ml Club
07/19/2024, 4:40 PMimport pandas as pd
import numpy as np
from utilsforecast.feature_engineering import trend
from mlforecast import MLForecast
from sklearn.linear_model import LinearRegression
# sample data
data = pd.read_csv('<https://datasets-nixtla.s3.amazonaws.com/air-passengers.csv>', parse_dates=['ds'])
h = 60
# generate features
train, future = trend(data, freq='MS', h=h)
models ={
'Linear': LinearRegression()
}
# training
fcst = MLForecast(
models=models,
freq='MS',
)
fcst.fit(train, static_features=[], fitted=True)
crossvalidation_df = fcst.cross_validation(
df=train,
h=60,
n_windows=1,
refit=False,
)
crossvalidation_df.head()