Quang Bui
09/10/2024, 5:41 PMlgb_params = {
'verbosity': -1,
'learning_rate': 0.1,
'num_leaves': 512,
'objective': 'rmse',
'num_iterations': 175
}
fcst = MLForecast(
models={
'avg': lgb.LGBMRegressor(**lgb_params)
},
freq=1,
lags=[1,2,3,4,5,6],
lag_transforms={
1: [
ExponentiallyWeightedMean(alpha=0.5),
RollingMean(window_size=2),
RollingMean(window_size=4),
RollingMean(window_size=6),
RollingMean(window_size=12),
RollingQuantile(window_size=2, p=0.5),
RollingQuantile(window_size=4, p=0.5),
RollingQuantile(window_size=6, p=0.5),
RollingStd(window_size=2),
RollingStd(window_size=4)
],
2: [RollingMean(window_size=2)],
4: [RollingMean(window_size=2)],
6: [
RollingMean(window_size=4),
RollingMean(window_size=6),
RollingStd(window_size=2),
]
},
num_threads=32
)
fcst.fit(
transformed_df,
prediction_intervals=PredictionIntervals(n_windows=20, h=5),
fitted=True)
When I call predict() with the interval levels,
predictions_w_intervals = fcst.predict(h=5, level=[80, 95])
predictions_w_intervals.head()
I get the following error:
ValueError Traceback (most recent call last)
Cell In[53], line 1
----> 1 predictions_w_intervals = fcst.predict(h=5, level=[80, 95])
2 predictions_w_intervals.head()
File /anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlforecast/forecast.py:743, in MLForecast.predict(self, h, before_predict_callback, after_predict_callback, new_df, level, X_df, ids)
741 cs_df = self._cs_df
742 n_series = self.ts.ga.n_groups
--> 743 forecasts = conformal_method(
744 forecasts,
745 cs_df,
746 model_names=list(model_names),
747 level=level_,
748 cs_h=self.prediction_intervals.h,
749 cs_n_windows=self.prediction_intervals.n_windows,
750 n_series=n_series,
751 horizon=h,
752 )
753 return forecasts
File /anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlforecast/forecast.py:60, in _add_conformal_distribution_intervals(fcst_df, cs_df, model_names, level, cs_n_windows, cs_h, n_series, horizon)
58 cuts.extend(1 - alpha / 200 for alpha in alphas)
59 for model in model_names:
---> 60 scores = cs_df[model].to_numpy().reshape(cs_n_windows, n_series, cs_h)
61 # restrict scores to horizon
62 scores = scores[:, :, :horizon]
ValueError: cannot reshape array of size 383870 into shape (20,6036,5)
José Morales
09/10/2024, 5:43 PMQuang Bui
09/10/2024, 5:46 PMQuang Bui
09/10/2024, 5:49 PMunique_id
that were omitted during training? i get the following message at the beginning of training:
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/utilsforecast/processing.py:737: UserWarning: The following series are too short for the window and will be dropped:
José Morales
09/10/2024, 5:49 PMQuang Bui
09/10/2024, 5:50 PMQuang Bui
09/10/2024, 5:50 PMQuang Bui
09/10/2024, 6:22 PMJosé Morales
09/10/2024, 6:24 PMQuang Bui
09/10/2024, 6:28 PM