DANIEL KIM
02/07/2025, 10:05 PM# Monthly dataset:
df = df[['unique_id', 'ds', 'y']]
seasonality = 12
models = [
AutoETS(model = 'ZZZ', season_length = seasonality),
DynamicOptimizedTheta(season_length = seasonality),
AutoCES(season_length = seasonality),
AutoARIMA(season_length = seasonality)
]
# Instantiate StatsForecast class
sf = StatsForecast(
df = d_new,
models = models,
freq = 'MS',
n_jobs = -1,
fallback_model = SeasonalNaive(season_length = seasonality)
)
sf.fit()
d_sf = sf.predict(h=24)
model_cols = [c for c in d_sf.columns if c != 'ds']
d_sf['yhat'] = d_sf[model_cols].clip(0).median(axis=1, numeric_only=True)
Marco
02/10/2025, 1:47 PMTyler Blume
02/10/2025, 2:37 PMTyler Blume
02/10/2025, 2:39 PMDANIEL KIM
02/10/2025, 9:25 PMDean Shabi
02/24/2025, 1:11 PMDANIEL KIM
03/11/2025, 3:31 AM