Bersu T
03/18/2025, 11:31 AMmodelLSTM = AutoLSTM(h=h,
loss=MAE(),
backend='optuna',
num_samples=10)
nf = NeuralForecast(models=[modelLSTM], freq='ME')
nf.fit(df=df_encoded, val_size=18)
Hi. When I do this I get an error stating Exception: Time series is too short for training, consider setting a smaller input size or set start_padding_enabled=True after running for a while, where are we expected to put the argument set_padding_enabled?Marco
03/18/2025, 2:05 PMconfig = dict(start_padding_enabled=True)
model = AutoLSTM(h=h, config=config)
Bersu T
03/19/2025, 12:31 PMdef config_lstm(trial):
return {
"start_padding_enabled": True}
modelLSTM = AutoLSTM(h=h,
config=config_lstm,
loss=MAE(),
backend='optuna',
num_samples=10)
nf = NeuralForecast(models=[modelLSTM], freq='ME')
nf.fit(df=df_encoded, val_size=18)
Bersu T
03/19/2025, 1:00 PMcv_result_lstm = nf.cross_validation(
df=df_encoded,
n_windows=n_windows,
step_size=step_size,
val_size=18,
id_col='unique_id',
time_col='ds',
target_col='y')
Bersu T
03/19/2025, 1:01 PMMarco
03/19/2025, 1:42 PMBersu T
03/19/2025, 1:57 PM