https://github.com/nixtla logo
#general
Title
# general
k

Kin Gtz. Olivares

09/28/2022, 10:42 PM
Hi @Ginger Holt The hrec.reconcile method needs the Y_hat_df to be indexed by ‘unique_id’. For the moment the pd.DataFrame management of the library is problematic I am opening and Github issue to either add the indexing requirements to the documentation or perform the indexing within the methods.
@Ginger Holt Would yo be able to provide an example of your problem in this Github issue? https://github.com/Nixtla/hierarchicalforecast/issues/58
1
In the meantime here is a working example with the 'unique_id' indexing right before the call to reconcile:
Copy code
import numpy as np
import pandas as pd

from statsforecast.core import StatsForecast
from statsforecast.models import ETS, Naive

from hierarchicalforecast.utils import aggregate
from hierarchicalforecast.core import HierarchicalReconciliation
from hierarchicalforecast.methods import BottomUp, MinTrace

# Load TourismSmall dataset
df = pd.read_csv('<https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/tourism.csv>')
df = df.rename({'Trips': 'y', 'Quarter': 'ds'}, axis=1)
df.insert(0, 'Country', 'Australia')

# Create hierarchical seires based on geographic levels and purpose
# And Convert quarterly ds string to pd.datetime format
hierarchy_levels = [['Country'],
                    ['Country', 'State'], 
                    ['Country', 'Purpose'], 
                    ['Country', 'State', 'Region'], 
                    ['Country', 'State', 'Purpose'], 
                    ['Country', 'State', 'Region', 'Purpose']]

Y_df, S, tags = aggregate(df=df, spec=hierarchy_levels)
qs = Y_df['ds'].str.replace(r'(\d+) (Q\d)', r'\1-\2', regex=True)
Y_df['ds'] = pd.PeriodIndex(qs, freq='Q').to_timestamp()
Y_df = Y_df.reset_index()

# Split train/test sets
Y_test_df  = Y_df.groupby('unique_id').tail(4)
Y_train_df = Y_df.drop(Y_test_df.index)

# Compute base auto-ETS predictions
# Careful identifying correct data freq, this data quarterly 'Q'
fcst = StatsForecast(df=Y_train_df,
                     #models=[ETS(season_length=12), Naive()],
                     models=[Naive()],
                     freq='Q', n_jobs=-1) 
Y_hat_df = fcst.forecast(h=4)

# Reconcile the base predictions
Y_train_df = Y_train_df.reset_index().set_index('unique_id')
Y_hat_df = Y_hat_df.reset_index().set_index('unique_id')
reconcilers = [BottomUp(),
               MinTrace(method='ols')]
hrec = HierarchicalReconciliation(reconcilers=reconcilers)
Y_rec_df = hrec.reconcile(Y_hat_df=Y_hat_df, Y_df=Y_train_df,
                          S=S, tags=tags)
Y_rec_df.groupby('unique_id').head(2)
🙂 2
g

Ginger Holt

09/29/2022, 5:17 PM
Thank you @Kin Gtz. Olivares for the working example. I indexed right before the call and that fixed the error.