This message was deleted.
# general
s
This message was deleted.
đź‘€ 1
m
Sure thing! @José Morales y currently updating some stuff. He might be able to help.
👍 1
j
Hi @Emre Varol, thanks for the reproducible example. The differences are coming from the changes in the default parameters of xgboost, the colab version is very old so it's hard to exactly pinpoint the main differences, however it seems that using the parameters that were the default in 0.9 reduces the differences. Running
xgb.XGBRegressor(objective='reg:squarederror').get_params()
on xgb 0.9 returns:
Copy code
{'base_score': 0.5,
 'booster': 'gbtree',
 'colsample_bylevel': 1,
 'colsample_bynode': 1,
 'colsample_bytree': 1,
 'gamma': 0,
 'importance_type': 'gain',
 'learning_rate': 0.1,
 'max_delta_step': 0,
 'max_depth': 3,
 'min_child_weight': 1,
 'missing': None,
 'n_estimators': 100,
 'n_jobs': 1,
 'nthread': None,
 'objective': 'reg:squarederror',
 'random_state': 0,
 'reg_alpha': 0,
 'reg_lambda': 1,
 'scale_pos_weight': 1,
 'seed': None,
 'silent': None,
 'subsample': 1,
 'verbosity': 1}
so using the following in your
get_forecast
function with xgb 1.6 I get pretty much the same results:
Copy code
import math
    params = {
        'base_score': 0.5,
        'booster': 'gbtree',
        'colsample_bylevel': 1,
        'colsample_bynode': 1,
        'colsample_bytree': 1,
        'gamma': 0,
        'importance_type': 'gain',
        'learning_rate': 0.1,
        'max_delta_step': 0,
        'max_depth': 3,
        'min_child_weight': 1,
        'missing': math.nan,
        'n_estimators': 100,
        'n_jobs': 1,
        'nthread': None,
        'objective': 'reg:squarederror',
        'random_state': 0,
        'reg_alpha': 0,
        'reg_lambda': 1,
        'scale_pos_weight': 1,
        'seed': None,
        'silent': None,
        'subsample': 1,
        'verbosity': 1
    }
    model = xgb.XGBRegressor(**params)
e
many thanks @José Morales