Slackbot
09/19/2022, 8:32 AMMax (Nixtla)
09/19/2022, 3:43 PMJosé Morales
09/20/2022, 12:35 AMxgb.XGBRegressor(objective='reg:squarederror').get_params()
on xgb 0.9 returns:
{'base_score': 0.5,
'booster': 'gbtree',
'colsample_bylevel': 1,
'colsample_bynode': 1,
'colsample_bytree': 1,
'gamma': 0,
'importance_type': 'gain',
'learning_rate': 0.1,
'max_delta_step': 0,
'max_depth': 3,
'min_child_weight': 1,
'missing': None,
'n_estimators': 100,
'n_jobs': 1,
'nthread': None,
'objective': 'reg:squarederror',
'random_state': 0,
'reg_alpha': 0,
'reg_lambda': 1,
'scale_pos_weight': 1,
'seed': None,
'silent': None,
'subsample': 1,
'verbosity': 1}
so using the following in your get_forecast
function with xgb 1.6 I get pretty much the same results:
import math
params = {
'base_score': 0.5,
'booster': 'gbtree',
'colsample_bylevel': 1,
'colsample_bynode': 1,
'colsample_bytree': 1,
'gamma': 0,
'importance_type': 'gain',
'learning_rate': 0.1,
'max_delta_step': 0,
'max_depth': 3,
'min_child_weight': 1,
'missing': math.nan,
'n_estimators': 100,
'n_jobs': 1,
'nthread': None,
'objective': 'reg:squarederror',
'random_state': 0,
'reg_alpha': 0,
'reg_lambda': 1,
'scale_pos_weight': 1,
'seed': None,
'silent': None,
'subsample': 1,
'verbosity': 1
}
model = xgb.XGBRegressor(**params)
Emre Varol
09/20/2022, 7:47 AM